Na física do estado sólido, a estrutura eletrônica de bandas, ou simplesmente estrutura de bandas, se refere à estrutura formada ao se explicitar a relação entre os momentos e energias permitidos e os momentos e energias não permitidos aos elétrons em uma amostra material, usualmente elétrons em um cristal. Há faixas "contínuas" de momentos e energias permitidos separadas por faixas contínuas de momentos e energias não permitidos aos elétrons confinados à amostra.
A relação precisa entre momento e energia para os elétrons na matéria condensada é descrita por uma relação de dispersão específica; que em cristais, por ser dependente da orientação, assume a forma tridimensional. Nela identifica-se com facilidade uma "estrutura em bandas" ao se explicitarem as faixas de momentos e energias permitidas em relação àquelas não permitidas aos elétrons.
A existência de momentos e energias proibidos aos elétrons confinados a um cristal deriva-se de um processo de "sintonia" entre os comprimentos de onda dos elétrons (ver dualidade onda-corpúsculo) em movimento através da estrutura periódica e a periodicidade imposta pelas posições dos íons na rede cristalina.
Introdução[editar | editar código-fonte]
A característica mais importante da relação de dispersão para elétrons em cristais é que existem intervalos de energia não permitidos para o elétron. Isto é, se você pudesse observar a energia de todos os elétrons em um cristal e as marcasse em um linha, você observaria que certas faixas de valores não estariam presentes. Estas faixas de energia desaparecidas são chamadas de gaps de energia e tem origem na interferência entre as funções de onda eletrônicas, suas paridades e a periodicidade do cristal.
A relação de dispersão de um elétron livre, isto, para um elétron livre da matéria e não confinado de qualquer outra forma, pode ser deduzida da sua energia cinética:
- x
- FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+ FUNÇÃO TÉRMICA.+ FUNÇÃO DE RADIOATIVIDADE, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAENERGIA DE PLANCKX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Como o momento deste elétron é:
- x
- FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+ FUNÇÃO TÉRMICA.+ FUNÇÃO DE RADIOATIVIDADE, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAENERGIA DE PLANCKX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Basta substitui-lo na energia cinética para obtermos a relação de dispersão de um elétron livre:
- x
- FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+ FUNÇÃO TÉRMICA.+ FUNÇÃO DE RADIOATIVIDADE, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAENERGIA DE PLANCKX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
ou, conforme diretamente enfatizado pela mecânica hamiltoniana:
- x
- FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+ FUNÇÃO TÉRMICA.+ FUNÇÃO DE RADIOATIVIDADE, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAENERGIA DE PLANCKX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Dela vê-se que a energia do elétron cresce com o quadrado de seu momento, e todos os valores de energia são possíveis a um elétron livre.
| Material | Forma da banda | Energia em eV | |
|---|---|---|---|
| 0 K | 300 K | ||
| Elementos | |||
| C (como diamante) | indirecta | 5,4 | 5,46–5,6[4] |
| Si | indireta | 1,17 | 1,12 |
| Ge | indireta | 0,75 | 0,67 |
| Se | direta | 1,74 | |
| Ligações IV-IV | |||
| SiC 3C | indireta | 2,36 | |
| SiC 4H | indireta | 3,28 | |
| SiC 6H | indireta | 3,03 | |
| Ligações III-V | |||
| InP | direta | 1,42 | 1,27 |
| InAs | direta | 0,43 | 0,355 |
| InSb | direta | 0,23 | 0,17 |
| InN | direta | 0,7 | |
| InxGa1-xN | direta | 0,7–3,37 | |
| GaN | directa | 3,37 | |
| GaP 3C | indirecta | 2,26 | |
| GaSb | directa | 0,81 | 0,69 |
| GaAs | directa | 1,52 | 1,42 |
| AlxGa1-xAs | x<0,4 directa, x>0,4 indirecta | 1,42–2,16 | |
| AlAs | indirecta | 2,16 | |
| AlSb | indirecta | 1,65 | 1,58 |
| AlN | directa | 6,2 | |
| BN | 5,8 | ||
| Ligações II-VI | |||
| TiO2 | 3,03 | 3,2 | |
| ZnO | directa | 3,436 | 3,37 |
| ZnS | 3,56 | ||
| ZnSe | directa | 2,70 | |
| CdS | 2,42 | ||
| CdSe | 1,74 | ||
| CdTe | 1,45 x | ||
x
FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
[EQUAÇÃO DE DIRAC].
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl